Different Types of Sterilization Process

Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life.

So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work?

The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others.

  1. Moist Heat Sterilization: Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, failure of steam penetration into porous loads, incorrect removal of air, etc.
  2. Dry Heat Sterilization: Dry heat sterilization is utilized for heat-stable non-aqueous preparations, powders and definite impregnated dressings. It may also be utilized for sterilization of some types of container. Sterilization by dry heat is generally carried out in a hot-air oven. Heat is carried from its source to load by radiation, convention and to a small extent by conduction.

This process can eliminate heat-resistant endotoxin. In each cycle it is predominant to make sure that the entire content of each container is maintained for a successful blend of time and temperature for most part to allow temperature variations in hot-air ovens, which may be considerable. Dry heat is utilized to sterilize glassware, porcelain and metal equipment, oils and fats and powders i.e. talc, etc.

  1. Gas Sterilization: Gaseous sterilizing agents are of two main types, oxidizing and alkylating agents. Vapour phase hydrogen peroxide is an example of the former. Ethylene oxide and formaldehyde are instance of the alkylating agents. However, the BP states that gaseous sterilization is used when there is no acceptable replacement. The main advantage of ethylene oxide is that many types of materials, including thermo labile materials, can be sterilized without damage.

Low temperature steam with formaldehyde has been utilized as an option for sterilizing thermo labile substances. Both ethylene oxide and formaldehyde have health risks and strict monitoring of personnel revealed to the gases required to make sure protection from harmful effects.

  1. Sterilization by Radiation: Radiations can be split up into two groups: electromagnetic waves and streams of particulate matter. The former group consists infrared radiation, ultraviolet light, X-rays and gamma rays. The latter group includes alpha and beta radiations. More frequently infrared radiation, ultraviolet light, gamma radiation and high-velocity electrons are utilized for sterilization.

(i) Ultraviolet Light:

A narrow range of UV wavelength is successful in eliminating the microorganism. The wavelength is powerfully absorbed by the nucleoproteins. The most important disadvantage of UV radiation as a sterilizing agent is its poor penetrating power. This is the result of powerful absorption by many substances. The application of UV radiation is limited.

(ii) Ionizing Radiations:

Ionizing radiations are satisfactory for commercial sterilization pro­cesses. It must have good penetrating power, high sterilizing efficiency, little or no damage result on irradiated materials and are capable of being produced efficiently. The radiations that satisfy these four measures are best high-speed electrons from machines and gamma rays from radioactive isotopes.

  1. Sterilization by Filtration: Membrane filters are built from cellulose derives or other polymers. There are no loose fibres or molecules in membrane filters. They keep molecules bigger than the pore size on the filter surface hence filters particularly useful in noticing of small numbers of bacteria.

Passage through a filter of suitable pore size can remove bacteria and moulds. Viruses and mycoplasma may not be maintained. After filtration the liquid is aseptically dispensed into formerly sterilized containers which are later sealed.

Other than this, it is tough to make universal statements about the various methods of sterilization because there can be huge non-identical in these considerations depending on the size and location of the sterilizer, as well as the methods waged for product release. All of these circumstances will influence selection of the sterilization process and the coherence with which it controls.

We at KERONE have a team of experts to help you with your need for Sterilization Machines from our wide experience. For any query write us at info@kerone.com or visit www.kerone.com.

Sterilization Method in Chemical and Psychological

Sterilization indicates to any process that removes, kills, or deactivates all compositions of microorganisms such as fungi, bacteria, viruses, spores, unicellular eukaryotic organisms such as Plasmodium, etc. Sterilization can be attainted through diverse means, including heat, chemicals, irradiation, high pressure, and filtration. Sterilization is distinct from disinfection, sanitization, and pasteurization, in that those methods reduce rather than destroying all forms of life and biological agents present. After sterilization, an object is resorted to as being sterile or aseptic.

Chemicals are also accustomed for sterilization. Heating provides an infallible way to exterminate objects of all transmissible agents, but it is not always suitable if it will vandalize heat-sensitive materials such as biological materials, fiber optics, electronics, and many plastics. In these circumstances chemicals, either in a gaseous or liquid form can be used as sterilants. While the use of gas and liquid chemical sterilants avoids the problem of heat vandalize, users must ensure that the article to be sterilized is chemically compatible with the sterilant being used and that the sterilant is able to reach all surfaces that must be sterilized. In addition, the use of chemical sterilants poses new provocations for workplace protection, as the properties that make chemicals successful sterilants normally make them injurious to humans. The method for separating sterilant residue from the sterilized materials varies depending on the chemical and process that is used. The chemical method of sterilization can be classified as liquid and gaseous sterilization.

Chemicals Used In Sterilization.

  • Ethylene oxide
  • Nitrogen dioxide
  • Ozone
  • Glutaraldehyde and formaldehyde
  • Hydrogen peroxide
  • Peracetic acid

Gaseous Sterilization

  • Gaseous sterilization engages the process of exposing equipment or devices to non- identical gases in a closed heated or pressurized chamber.
  • Gaseous sterilization is a more successful technique as gases can pass between tiny orifices and give more successful outcome.
  • Besides, gases are often used along with heat treatment which also smoothens the functioning of the gases.
  • However, there is a matter of release of some toxic gases throughout the process which needs to be eliminated at regular intervals from the system.
  • The mechanism of action is non-identical for divergent types of gases.

Liquid Sterilization

  • Liquid sterilization is the process of sterilization which involves the submerging of equipment in the liquid sterilant to eliminate all feasible microorganisms and their spores.
  • Although liquid sterilization is not as effective as gaseous sterilization, it is appropriate in conditions where a low level of defilement is present.

Psychological Sterilization

It can be strenuous to measure the psychological outcomes of sterilization, as definite psychological phenomenon may be more common in those who finally decide to take part in sterilization. The relationships between psychological problems and sterilization may be due more to correlation preferably than causation. That being said, there are several trends surrounding the psychological health of those who have received sterilizations. A 1996 Chinese study found that “risk for depression was 2.34 times greater after tubal ligation, and 3.97 times greater after vasectomy. If an individual goes into the course of action after being coerced or with a lack of understanding of the plan of action and its consequences, he or she is more likely to suffer negative psychological consequences afterwards. However, most people in the United States who are sterilized keep the same level of psychological health as they did preceding to the course of action. Because sterilization is a largely irreversible procedure, post-sterilization regret is a major psychological effect.

We at KERONE have a team of experts to help you with your need for Sterilization Equipment’s from our wide experience. For any query write us at info@kerone.com or visit www.kerone.com.

Sterilization of Food, Grains and Seeds

Food Grains are vital and essential dietary components, which help to get many nutrients including vitamins, minerals, protein, and carbohydrates required for survival and healthy life and growth of human body. Rice, Wheat, Maize, cowpea, millets, sorghum and lentils are some of the very popular grains consumed and adopted in day-to-day life for dietary need in major part of the world. Since the cultivation periods and locations are fixed and minimum and increasing population and increased demand of grains and foods now, has raised the concern of food cultivation and preservation now than that of before. For the food to be consumed post cultivation season and make it available to urban population the storage and transport has become critical.
Huge sum of grain, legumes and seeds are lost/ destroyed by insect attack in large part of the world, estimated around 30% (Hall, 1970) of the harvest. Developing countries are having more favorable environmental condition for increase of insect and pests breeding and spread, which make them more susceptible to loss of stored grains due to insects and pests. The insects and pests, deteriorates the weights, colors, nutrition levels, even make harmful if consumed. This contamination of foods, grains and seeds are increasing the food crisis in world.

To prevent foods, grains and seeds from contamination, it’s required more than recommended sterilizing and disinfesting the food grains before storage and transportation is initiated. Most common method of sterilizing and disinfesting are chemical coating, heating and cold treatment, or combination of these treatments.
Major reason of insect or pest attack is due to water contents within the grains, hence the heating (dry heat mechanism) has become the most widely accepted by major large scale storage and transportation authorities. The heat used to remove the water contents of microbes and subsequent oxidation.
In traditional dry heat is performed in a hot air sterilizer. This achieved by circulation the hot air in the metal or glass chamber. This has been very old and suppose to be very effective method of sterilization however many times it failed to deliver the desired result, this is because all the grains not coming in contact with hot air for desired time period hence equal amount of water reduction is not achieved.

KERONE in collaboration with EMITECH (Italy) has preformed various studies in the field of application of microwave for sterilization and disinfestations process, the microwave based heating system have delivered better result in very half of the time duration. Due to source heat generation property of microwave entire foods, grains or seeds undergone for processing achieves same level of treatment.
Application of Microwave has been very environment friendly and technically advanced process for sterilization and disinfestations suitable for all type of foods, grains and seeds by doing minor change in supply parameters.

For any query please feel free to contact info@kerone.com or visit us at http://www.kerone.com/mw-sterilization-disinfestation-systems.php.