Industrial Revolution in the Manufacturing Industry

Textiles were the dominant industry of the industrial Revolution in terms of employment, worth of output and capital invested with. The textile industry was conjointly the primary to use modern production methods.

The Industrial Revolution began in great United Kingdom, and many of the technological innovations were of British origin. By the mid-18th century United Kingdom was the world’s leading business nation, controlling a world trading empire with colonies in North America and also the Caribbean, and with major military and political hegemony on the Indian subcontinent, notably with the proto-industrialised Mughal Bengal, through the activities of the east India Company. The development of trade and also the rise of business were among the main causes of the industrial Revolution.

The earliest recorded use of the term “Industrial Revolution” seems to have been in a letter from 6 July 1799 written by French envoy Louis-Guillaume Otto, saying that France had entered the race to industrialise. “The plan of a replacement social order supported major industrial change was clear in Southey and Owen, between 1811 and 1818, and was implicit as early as Blake within the early 1790s and words worth at the turn of the [19th] century.” The term industrial revolution applied to technological amendment was becoming a lot of common by the late decade, as in Jérôme-Adolphe Blanqui’s description in 1837 of la révolution industrielle.

Six factors facilitated industrialization: high levels of agricultural productivity to produce excess workforce and food; a pool of managerial and entrepreneurial skills; accessible ports, rivers, canals and roads to cheaply move raw materials and outputs; natural resources like coal, iron and waterfalls; political stability and a legal system that supported business; and financial capital available to invest.

The commencement of the industrial Revolution is closely connected to a small variety of innovations, starting within the second half of the eighteenth century. By the 1830s the following gains had been made in important technologies:

  • Textiles – mechanised cotton spinning powered by steam or water increased the output of a worker by a factor of around 500. The power loom increased the output of a worker by a factor of over 40. The cotton gin increased productivity of removing seed from cotton by a factor of 50. Large gains in productivity also occurred in spinning and weaving of wool and linen, but they were not as great as in cotton.
  • Steam power – the efficiency of steam engines increased so that they used between one-fifth and one-tenth as much fuel. The adaptation of stationary steam engines to rotary motion made them suitable for industrial uses. The high pressure engine had a high power to weight ratio, making it suitable for transportation. Steam power underwent a rapid expansion after 1800.
  • Iron making – the substitution of coke for charcoal greatly lowered the fuel cost of pig iron and wrought iron production. Using coke also allowed larger blast furnaces, resulting in economies of scale. The steam engine began being used to pump water and to power blast air in the mid-1750s, enabling a large increase in iron production by overcoming the limitation of water power. The cast iron blowing cylinder was first used in 1760. It was later improved by making it double acting, which allowed higher blast furnace temperatures. The puddling process produced a structural grade iron at a lower cost than the finery forge. The rolling mill was fifteen times faster than hammering wrought iron. Hot blast (1828) greatly increased fuel efficiency in iron production in the following decades.
  • Invention of machine tools – The first machine tools were invented. These included the screw cutting lathe, cylinder boring machine and the milling machine. Machine tools made the economical manufacture of precision metal parts possible, although it took several decades to develop effective techniques.

The Industrial revolution has been criticised for complete ecological collapse, inflicting mental illness, pollution and unnatural systems of organizing for humanity. Since the beginning of the industrial revolution individuals have criticised it by stating the industrial Revolution turned humanity and nature into slaves and destroying the world. It’s also been criticised by valuing profits and company growth over life and wellbeing, multiple movements have arose philosophically against the industrial revolution and include groups like the Amish and Primitivism.

We at KERONE have a team of experts to help you with your need in various products range from our wide experience.

Importance and applications of Industrial Minerals

Industrial resources (minerals) are geological materials that are mined for their industrial worth, that are not fuel (fuel minerals or mineral fuels) and aren’t sources of metals (metallic minerals) but are utilized in the industries based on their physical and/or chemical properties. they’re utilized in their natural state or after beneficiation either as raw materials or as additives in a very wide range of applications.

Industrial minerals could also be defined as minerals mined and processed (either from natural sources or synthetically processed) for the value of their non-metallurgical properties, that provides for their use in a particularly wide range of industrial and domestic applications.  As a general rule, they’ll also be defined as being non-metallic, non-fuel minerals.

Obvious examples of naturally occurring industrial minerals include:

  • clays
  • sand
  • talc
  • limestone
  • gypsum
  • pumice
  • potash

Other examples of natural industrial minerals include minerals that also have a metallurgical as well as non-metallurgical value, such as:

  • bauxite (aluminium metal + bauxite used in cements, abrasives, refractories & alumina source for many applications)
  • chromite (chrome metal & ferrochrome alloy + foundry sand, chemicals, pigments)
  • rutile (titanium metal + white pigment for paints, paper, plastics)
  • zircon (zirconium metal + source of zirconia for ceramics, glass)
  • manganese (manganese metal + source of manganese dioxide for batteries, pigments)
  • stibnite (antimony metal + source of antimony trioxide used as flame retardant)
  • Quartz (silicon metal + source of silica in glass, ceramics, fillers).

There are also synthetic industrial minerals that are factory-made from natural minerals. Artificial minerals are usually processed as a result of the inferior characteristics and/or scarcity of their natural counterparts.

Quite frankly, without industrial minerals, an enormous range of everyday domestic and important industrial product would simply not exist. In a median 9-5 working day you’ll probably acquire contact with a minimum of 100 things that are factory-made from industrial minerals.

A useful example is a quick examination of your home kitchen to see just how important industrial minerals are to our everyday environment. Industrial minerals in your kitchen:

In essence, wherever there is demand for these industrial and domestic applications, i.e. a market, this will create a trading business specific to that market. The crucial point is that the pattern of industrial minerals trade is utterly dictated by the needs of the population and the performance of the economy, and then combined with mineral availability.

As an industrial minerals consultant once said: “Without a market, an industrial mineral deposit is merely a geological curiosity”. So, put simply, no market demand = no mineral development = no mineral trade.

Mineral consuming market existence and its performance directly affects demand, and therefore trade, for mineral raw materials

The route of a mineral from mine to market may involve more than one stage, i.e. its consumption in manufacturing an intermediate mineral or end product, which is then consumed in the manufacture of another end product, which is then sold to an end-use market.

Many industrial minerals can serve a range of markets, which also impacts the pattern of minerals trade in that a single mineral source can supply several different customers owing to market type, as well as market geography.

For example, bentonite sourced in Wyoming travels to domestic and overseas population centres owing to its widespread use as an absorbent in cat litter products. However, its equally important use as a major component in drilling fluids means that it is also freighted to centres of oil and gas drilling activity, eg. Gulf of Mexico.

Typical examples of industrial rocks and minerals are limestone, clays, sand, gravel, diatomite, kaolin, bentonite, silica, barite, gypsum, and talc. Some examples of applications for industrial minerals are construction, ceramics, paints, electronics, filtration, plastics, glass, detergents and paper.

In some cases, even organic materials (peat) and industrial products or by-products (cement, slag, silica fume) are categorised underneath industrial minerals, further as metallic compounds mainly used in non-metallic type (as AN example most titanium is used as AN oxide TiO2 instead of Ti metal).

The analysis of raw materials to see their suitability to be used as industrial minerals needs technical test-work, mineral processing trials and end-product analysis; free to transfer evaluation manuals are accessible for the following industrial minerals: limestone, flake graphite, diatomite, kaolin, clay and construction materials.

The best way to see who is involved in the industrial minerals business is to examine the mine to market supply chain.

All industrial minerals are mined (surface and underground) and so undergo processing to refine the crude mineral ore into a processed grade or series or grades for sale to the market. These are then transported from the source to a different plant for further process, or directly to the consuming markets.

We at KERONE have experience of 47+ years in helping the industries with their needs. We at KERONE have a team of experts to help you with your need for Industrial Minerals in various products range from our wide experience.

Different Methods of Metal Curing

Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term curing can be used for all the processes where starting from a liquid solution, a solid product is obtained.

During the curing process, single monomers and oligomers, mixed with or without a curing agent, react to form a tridimensional polymeric network.

In the initial part of the reaction branches molecules with numerous architectures are formed, and their molecular weight will increase in time with the extent of the reaction till the network size is up to the size of the system. The system has lost its solubility and its viscosity tends to infinite. The remaining molecules begin to be with the macroscopic network till they react with the network creating different crosslinks. The crosslink density will increase until the system reaches the end of the chemical reaction.

Curing can be initiated by heat, radiation, electron beams, or chemical additives. To quote from IUPAC: curing “might or might not require mixing with a chemical curing agent.

“Thus, two broad classes are

  • Curing induced by chemical additives (also called curing agents, hardeners).
  • Curing in the absence of additives. An intermediate case involves a mixture of resin and additives that requires external stimulus (light, heat, radiation) to induce curing.

The curing methodology depends on the resin and the application. Particular attention is paid to the shrinkage induced by the curing. Usually small values of shrinkage (2-3%) are desirable.

Curing induced by additives

Epoxy resins are typically cured by the use of additives, often called hardeners. Polyamines are often used. The amine group’s ring-open the epoxide rings.

In rubber, the curing is also induced by the addition of a cross linker. The resulting method is termed Sulfur vulcanization. Sulfur breaks down to form polysulfide cross-links (bridges) between sections of the polymer chains. The degree of crosslinking determines the rigidity and durability, similarly as different properties of the material.

Paints and varnishes usually contain oil drying agents; metal soaps that catalyse cross-linking of the unsaturated oils of which they’re largely comprised. As such, once paint is described as drying it’s infact hardening. Oxygen atoms serve the crosslinks, analogous to the role played by sulfur within the vulcanization of rubber.

Curing without additives

In the case of concrete, curing entails the formation of silicate crosslinks. The process is not induced by additives.

In several cases, the resin is provided as a solution or mixture with a thermally-activated catalyst, that induces crosslinking but solely upon heating. for example, some acrylate-based resins are formulated with dibenzoyl peroxide. Upon heating the mixture, the peroxide converts to a free radical, which adds to an acrylate, initiating crosslinking.

Some organic resins are cured with heat. As heat is applied, the viciousness of the resin drops before the onset of crosslinking, whereupon it will increase because the constituent oligomers interconnect. This method continues till a tridimensional network of oligomer chains is formed – this stage is termed gelation. In terms of processability of the resin this marks a very important stage: before gelation the system is relatively mobile, after it the quality is incredibly limited, the micro-structure of the resin and also the composite material is fixed and severe diffusion limitations to further cure are created. Thus, in order to achieve vitrification in the resin, it’s typically necessary to increase the process temperature after gelation.

When catalysts are activated by ultraviolet radiation, the process is called UV cure.

Different Monitoring Methods:

  • Rheological analysis
  • Thermal analysis
  • Dielectrometric analysis
  • Spectroscopic analysis
  • Ultrasonic analysis

We at KERONE have a team of experts to help you with your need for Curing in various products range from our wide experience.

Application and Popular Uses of Graphite

Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels.

The principal types of natural graphite, each occurring in different types of ore deposits, are

  • A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular;
  • Amorphous graphite: very fine flake graphite is sometimes called amorphous;
  • Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fibrous or acicular crystalline aggregates, and is probably hydrothermal in origin.
  • Highly ordered pyrolytic graphite refers to graphite with an angular spread between the graphite sheets of less than 1°.
  • The name “graphite fiber” is sometimes used to refer to carbon fibres or carbon fiber-reinforced polymer.

Graphite occurs in metamorphic rocks as a result of the reduction of sedimentary carbon compounds during metamorphism. It also occurs in igneous rocks and in meteorites. Minerals associated with graphite include quartz, calcite, micas and tourmaline. The principal export sources of mined graphite are in order of tonnage: China, Mexico, Canada, Brazil, and Madagascar.

In meteorites, graphite occurs with troilite and silicate minerals. Small graphitic crystals in meteoritic iron are called cliftonite. Some microscopic grains have distinctive isotopic compositions, indicating that they were formed before the Solar system. They are one of about 12 known types of minerals that predate the Solar System and have also been detected in molecular clouds. These minerals were formed in the ejecta when supernovae exploded or low to intermediate-sized stars expelled their outer envelopes late in their lives. Graphite may be the second or third oldest mineral in the Universe.

Historically, graphite was called black lead or plumbago. Plumbago was commonly used in its massive mineral form. Both of these names arise from confusion with the similar-appearing lead ores, particularly galena. The Latin word for lead, plumbum, gave its name to the English term for this grey metallic-sheened mineral and even to the leadworts or plumbagos, plants with flowers that resemble this colour.

The term black lead usually refers to powdered or processed graphite, matte black in color.

Uses of natural graphite

Natural graphite is mostly used for refractories, batteries, steelmaking, expanded graphite, brake linings, foundry facings and lubricants.

  • Refractories
  • Batteries
  • Steelmaking
  • Brake linings
  • Foundry facings and lubricants
  • Pencils
  • Other uses

Natural graphite has found uses in zinc-carbon batteries, electric motor brushes, and various specialized applications. Graphite of various hardness or softness ends up in totally different qualities and tones when used as an artistic medium. Railroads would usually combine powdered graphite with waste oil or linseed oil to make a heat-resistant protective coating for the exposed portions of a steam locomotive’s boiler, like the smoke box or lower a part of the furnace.

A high-quality flake graphite product that closely resembles natural flake graphite may be made up of steelmaking kish. Kish may be a large-volume near-molten waste skimmed from the molten iron feed to a basic oxygen furnace, and consists of a mixture of graphite (precipitated out of the supersaturated iron), lime-rich slag, and a few iron. The iron is recycled on site, leaving a mixture of graphite and slag. The simplest recovery method uses hydraulic classification (which utilizes a flow of water to separate minerals by specific gravity: graphite is light-weight and settles nearly last) to urge a 70th graphite rough concentrate. Leaching this concentrate with hydrochloric acid gives a 95th graphite product with a flake size ranging from 10 meshes down.

We at KERONE have a team of experts to help you with your need for Graphite in various products range from our wide experience.

Rotary Dryer Roaster in Continuous Drying and Roasting

Rotary dryer Roaster is a continuous multi-zone convection system that has best drying/roasting in a mild and sanitary manner. First-in, first-out production and even heating with a sensible, step-spiral, and flighted drum design achieves uniform drying and roasting.

Energy-efficient, product-focused heating maximizes heat transfer and reduces heat loss with heated air that’s focused solely into the product bed and nowhere else. Positive temperature control offers unmatched product uniformity because the dryer/roaster automatically regulates its own internal temperature. A variety of product characteristics is feasible by utilizing multiple processing zones.

Ideal Applications:

  • Nuts and dough-coated nuts
  • Seeds
  • Jerky
  • Meat chips and protein-based snacks
  • Pet treats
  • Pellet snacks
  • Pork rinds

Satisfy a diverse and demanding consumer palette with a range of product characteristics created possible by a customizable array of distinctive processing zones that severally control temperature and air flow. Maximize heat transfer and reduce heat loss with heated air that is focused into the product bed and nowhere else.

The Rotary Dryer Roaster (RDR) from Heat and Control is designed to provide snack food operators with a complete end-to-end solution for the dry roasting of nut and seed products.

The RDR multizone convection dryer/roaster system uses the latest technological advances in dry roasting so food processors can continuously process high volumes of snack foods, such as nuts, seeds and protein/meat-based snacks.

The unit provides operators with complete control to dry or roast in a continuous, gentle and sanitary manner with optimal quality and uniform results.

Along with nut products, the RDR is also suitable for applications such as the drying of meats and poultry to create jerky and meat chips, as well as drying pet products to create food and treats.

Kerone provides a whole vary of snack line capabilities for seasoned and coated nut snacks, as well as frying, dryer/roasting, seasoning, coating, conveying, weighing, packaging, case packing, examination and controls.

The Rotary Dryer Roaster is meant to supply high volume processing of various product whereas ensuring uniform results.

Target Applications

  • Dry roasting of nuts and seeds, including dough coated styles
  • Drying of meat and poultry to create products such as jerky and meat chips
  • Drying of pet products to create food and treats

With thousands of food processing applications worldwide and testing centers to support your needs, Kerone will bring information, experience, and technology to your next project.

We at KERONE have a team of experts to help you with your need for Rotary Dryer Roaster for Continuous Drying in various products range from our wide experience.

Injection Moulding Process and Advantages

Injection molding is a manufacturing process for producing components by injecting melted material into a mould, or mold. Injection molding will be performed with a bunch of materials mainly including metals, glasses, elastomers, confections, and most typically thermoplastic and thermosetting polymers. Material for the half is fed into a heated barrel, mixed, and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. When a product is designed, typically by an industrial designer or an engineer, moulds are created by a mould-maker from metal, typically either steel or aluminium, and precision-machined to create the features of the specified part. Injection molding is widely used for manufacturing a range of elements, from the tiniest elements to entire body panels of cars. Advances in 3D printing technology, utilizing photopolymers that don’t soften throughout the injection molding of some lower-temperature thermoplastics, will be used for a few easy injection moulds.

Injection molding uses a special-purpose machine that has 3 parts: the injection unit, the mould and therefore the clamp. parts to be injection-molded should be very carefully designed to facilitate the molding process; the material used for the half, the specified form and options of the half, the material of the mould, and therefore the properties of the molding machine should all be taken into consideration. The versatility of injection molding is facilitated by this breadth of design considerations and possibilities.


A mold is a hollow metal block into which molten plastic is injected to from a certain fixed shape. Although they are not illustrated in the figure shown below, actually there are many holes drilled in the block for temperature control by means of hot water, oil or heaters.

Molten plastic flows into a mold through a sprue and fills cavities by way of runners and gates. Then, the mold is opened after cooling process and the ejector rod of the injection molding machine pushes the ejector plate of the mold to further eject moldings.


A molding consists of a sprue to introduce molten resin, a runner to lead it to cavities, and products. Since obtaining only one product by one shot is very inefficient, a mold is usually designed to have multiple cavities connected with a runner so that many products can be made by one shot.

If the length of the runner to each cavity is different in this case, the cavities may not be filled simultaneously, so that dimensions, appearances or properties of the moldings are often different cavity by cavity. Therefore the runner is usually designed so as to have the same length from the sprue to each cavity.

Injection molding is used to create many things such as wire spools, packaging, bottle caps, automotive parts and components, toys, pocket combs, some musical instruments, one-piece chairs and small tables, storage containers, mechanical parts, and most other plastic products available today. Injection molding is the most common modern method of manufacturing plastic parts; it is ideal for producing high volumes of the same object.

Usually, the plastic materials are formed in the shape of pellets or granules and sent from the raw material manufacturers in paper bags. With injection molding, pre-dried granular plastic is fed by a forced ram from a hopper into a heated barrel. As the granules are slowly moved forward by a screw-type plunger, the plastic is forced into a heated chamber, where it is melted. As the plunger advances, the melted plastic is forced through a nozzle that rests against the mould, allowing it to enter the mould cavity through a gate and runner system. The mould remains cold so the plastic solidifies almost as soon as the mould is filled.

Different types of injection molding processes

Although most injection molding processes are covered by the conventional process description above, there are several important molding variations including, but not limited to:

  • Die casting
  • Metal injection molding
  • Thin-wall injection molding
  • Injection molding of liquid silicone rubber[23]:17–18
  • Reaction injection molding
  • Micro injection molding
  • Gas-assisted injection molding
  • Cube mold technology

Robotic molding

Automation means that the smaller size of parts permits a mobile inspection system to examine multiple parts more quickly. In addition to mounting inspection systems on automatic devices, multiple-axis robots can remove parts from the mould and position them for further processes.

Specific instances include removing of parts from the mould immediately after the parts are created, as well as applying machine vision systems. A robot grips the part after the ejector pins have been extended to free the part from the mould. It then moves them into either a holding location or directly onto an inspection system. The choice depends upon the type of product, as well as the general layout of the manufacturing equipment. Vision systems mounted on robots have greatly enhanced quality control for insert molded parts. A mobile robot can more precisely determine the placement accuracy of the metal component, and inspect faster than a human can.

Finally, you must seek for an injection molding business which will handle huge projects. once you got to scale up production, you don’t wish to have to seem for a brand new supplier just because the company turned out to be incapable of doing larger runs.

We at KERONE have a team of experts to help you with your need for Injection Molding Process in various products range from our wide experience.

Infrared heating in food industry

Energy conservation is one of the key factors determining profitability and success of any unit operation. Heat transfer occurs through one of three ways, conduction, convection, and radiation. Foods and biological materials are heated primarily to increase their shelf life or to boost taste. In conventional heating that is achieved by combustion of fuels or by an electrical resistive heater heat is generated outside of the item to be heated and is sent to the material by convection of hot air or by thermal conduction. By exposing an object to infrared (IR) radiation, the heat energy generated will be absorbed by food materials. Together with microwave, radiofrequency (RF), and induction, IR radiation transfers thermal energy within the form of electromagnetic (EM) waves and encompasses that portion of the EM spectrum that borders on visible radiation and microwaves. Bound characteristics of IR heating like efficiency, wavelength, and reflectivity set it except for and build it more effective for some applications than others. IR heating is additionally gaining popularity because of its higher thermal efficiency and quick heating rate/response time as compared to conventional heating. Recently, IR radiation has been widely applied to numerous thermal processing operations within the food industry like dehydration, frying, and sterilization.

The amount of the IR radiation that is incident on any surface has a spectral dependence because energy coming out of an emitter is composed of different wavelengths and the fraction of the radiation in each band, dependent upon the temperature and emissivity of the emitter. The wavelength at which the maximum radiation occurs is determined by the temperature of the IR heating elements. This relationship is described by the basic laws for blackbody radiation such as Planck’s law, Wien’s displacement law, and Stefan–Boltzman’s law.

The effect of IR radiation on optical and physical properties of food materials is crucial for the design of an infrared heating system and optimization of a thermal process of food components. The infrared spectra of such mixtures originate with the mechanical vibrations of molecules or particular molecular aggregates within a very complex phenomenon in overlapping.

The application of infrared radiation to food processing has gained momentum due to its inherent advantages over the conventional heating systems. Infrared heating has been applied in drying, baking, roasting, blanching, pasteurization, and sterilization of food products.

Drying and dehydration Infrared heating provides an imperative place in drying technology and extensive research work has been conducted in this area. Most dried vegetable products are prepared conventionally using a hot‐air dryer. However, this method is inappropriate when dried vegetables are used as ingredients of instant foods because of low rehydration rate of the vegetables. Freeze‐drying technique is a competitive alternative; however, it is comparatively expensive.

Application of FIR drying in the food industry is expected to represent a new process for the production of high‐quality dried foods at low cost. The use of IR radiation technology for dehydrating foods has numerous advantages including reduction in drying time, alternate energy source, increased energy efficiency, uniform temperature in the product while drying, better‐quality finished products, a reduced necessity for air flow across the product, high degree of process control parameters, and space saving along with clean working environment.

Two conventional types of infrared radiators used for process heating are electric and gas‐fired heaters. These 2 types of IR heaters generally fit into 3 temperature ranges 343 to 1100 °C for gas and electric IR, and 1100 to 2200 °C for electric IR only. IR temperatures are typically used in the range of 650 to 1200 °C to prevent charring of products. The capital cost of gas heaters is higher, while the operating cost is cheaper than that of electric infrared systems. Electrical infrared heaters are popular because of installation controllability, ability to produce prompt heating rate, and cleaner form of heat. Electric infrared emitters also provide flexibility in producing the desired wavelength for a particular application.

IR heating is a unique process; however, presently, the application and understanding of IR heating in food processing is still in its infancy, unlike the electronics and allied sector where IR heating is a mature industrial technology. It is further evident from this review that IR heating offers many advantages over convection heating, including greater energy efficiency, heat transfer rate, and heat flux that results in time‐saving as well as increased production line speed. IR heating is attractive primarily for surface heating applications. In order to achieve energy optimum and efficient practical applicability of IR heating in the food processing industry, combination of IR heating with microwave and other common conductive and convective modes of heating holds great potential. It is quite likely that the utilization of IR heating in the food processing sector will augment in the near future, especially in the area of drying and minimal processing.

We at KERONE have a team of experts to help you with your need for Infrared Heating in food industry in various products range from our wide experience.

PET Flakes Crystallizer and Dryer

PET is highly hygroscopic and absorbs moisture from the atmosphere. Tiny amounts of moisture can hydrolyse PET within the melt part, reducing molecular weight. PET should be dry just prior to processing, and amorphous PET needs crystallization prior to drying so that the particles don’t stick together as they’re going through glass transition.

Hydrolysis can occur due to moisture and this often can be seen as a reduction in the IV (Intrinsic Viscosity) of the product. PET is “semi-crystalline”. When the IV is reduced, the bottles are more brittle and tend to fail at the “gate” (injection point) during blowing and filling. It is very possible that due to the initial moisture level in the resin, and the amount removed during vacuum that a significant amount of moisture still remains as it is reaching its melt phase in the extruder.

In its “crystalline” state it has both crystalline and amorphous portions in its molecular structure. The crystalline portion develops where the molecules can align themselves in a very compact linear structure. In the non-crystalline regions the molecules are in a more random arrangement. By insuring that your crystallinity is high, prior to processing, the result will be a more uniform and higher quality product.

Another thing to consider is the number of times the PET has been processed. Each time the PET is processed there is a reduction in IV. Therefore, PET that has been used to make a bottle, recycled and used again, does not have the IV of the original bottle. Each time the bottle is recycled, the IV is further reduced. This is why a percentage of virgin resin is often added to increase the products properties.

Flake size is determined by the grinder. I have seen customers who think that ¼ inch is perfect and those who think ¾ is best. The smaller the flake the more fines will be produced and the better the material will flow in the drying hopper and vacuum chambers. Extremely fine grinds tend to lead to higher pressure drop in the hopper and can cause reduced air flow and uneven distribution. Large grinds can sometimes cause uneven hopper material flow.

60% regrind or more is common in extrusion. Most bottle applications are less than 10% for food and beverage and less than 30% otherwise. It depends on the source of the regrind and the end product. Blow molding is more difficult when you use material with different heat history and IV. Fines can also cause processing problems.

The disadvantage of using regrind versus virgin resin is that regrinds have a heat history and have a significantly lower IV (Intrinsic Viscosity). Lower IV in the finished part causes it to be more brittle/less flexible. The second disadvantage is that there tends to be more “yellowing” in regrind materials that can cause a color or haziness issue.

It is more important to remove the moisture than to heat it. However, it is very difficult to measure moisture on-line in a process so time and temperature is generally used to set the moisture level achieved. For instance, with PET processing, it is generally assumed that if there is 4-6 hours in the drying hopper at 325-350° F, the moisture will be reduced to less than 50 ppm.

After the PET has been formed into a sheet, there isn’t typically any additional pre-conditioning required before thermoforming. The sheet will undergo heat in the thermoforming and as long as it doesn’t approach the melt temperature the process just changes the shape of the already formed sheet and the stresses imparted to the sheet tend to give it strength.

In general, crystallizing master batch can have a lot of drying/crystallizing issues. Unless the quantity is so large that you can afford to purchase a crystallizer, buying crystallized master batch is probably preferred.

We at KERONE have a team of experts to help you with your need for PET flakes crystallizer and dryer in various products range from our wide experience.

How to compost food waste and use as organic fertilize

Composting is the natural process of decomposition and recycling of organic material into a humus-rich soil amendment known as compost. Food waste is composed of organic matter which can be used for composting to make fertilizer. It is an effective and eco-friendly way of disposing of food waste in your kitchen.

By using leftovers and other food waste, you can convert these smelly items from the kitchen waste into a highly organic product rich in nutrients that you can use to grow vegetables or flowers with it. Things like paper, twigs, and leaves are rich in carbon while grass, coffee, and tea grounds, fruit, and vegetables are rich in nitrogen. The proper mixture is key to good compost.

Why use food waste as fertilizer?

Food waste is a major challenge in the present world, tons of food is thrown away in the garbage. We could use all the food waste and prepare compost out of them which can be used as organic fertilizer. This way we save the earth from the pollution caused by food waste and also do something productive.

Food waste is unique as a composting agent; it is the main source of organic matters. Fruits, vegetables, grains, coffee filters, eggshells can be composted.

How to prepare the compost:

  • Collect and separate your edible kitchen waste (vegetable peels, fruit peels, and small amounts of wasted cooked food) in a container.
  • Now collect some dry organic matter like dried leaves, sawdust, and wood ash in a small container
  • Take a big container or earthen pot or a bucket and drill 4 5 holes around the container at different levels to let air inside.
  • Now fill the bottom of the container with a layer of soil.
  • Now start adding food waste in layers alternating wet waste (food scraps, vegetable, and fruit peels) with dry waste (straw, sawdust, dried leaves).
  • Cover this container with a plastic sheet or a plank of wood to help retain moisture and heat.
  • Check the container every few days and if you think the pile is too dry, sprinkle some water so that it is moist.

You can also add wood ash and sawdust to the compost to help speed up the composting process. Vegetables and fruit peelings are the number one food remnants you should use. To come up with a nutrient-rich fertilizer, you need to add some natural waste to your compost like the grass clippings and leaves from your lawn.

The next is drying and cooling process, organic fertilizer drying and cooling usually can be combined together. After granulating, the organic granules are often with high moisture and heat, for making better quality organic fertilizer, the content of them should be reduced to a certain percentage.

Rotary drum fertilizer dryer is used to dry organic fertilizer granules and after drying, the moisture content can be decreased to 10%. And about organic fertilizer granules cooling, fertilizer rotary drum cooler will help remove the heat for granules. Granules enter from the inlet and cooling air enter from outlet join adversely. The fertilizers of low temperature will be discharged through outlet after transferring the heat to the cooling air. It can greatly improve cooling rate.

We at KERONE have a team of experts to help you with your need for organic fertilizer in various products range from our wide experience.

Heat and Mass Transfer Modeling for Fruit Drying

Drying is an efficient technique for fruit storage/preservation. Drying may retain quality end product that is difficult, because all fruits are variable in structure, so, heat and mass transfer modeling (operating parameters) is a helpful technique to deal with it. This could only be done by selecting the proper sort of drying equipment and understanding the science behind the drying method as well as thermal properties of fruit. Drying method have several effects on different heat sensitive fruits elements and equipment (sensors etc.) also that result into increase in maintenance price, diffusion rate goes to critical limits etc. Because, choice of an acceptable drying technique and equipment is most significant regarding product quality and its amount. Modeling of a drying method considering different drying parameters and their effects on final quality of product and economic importance are mentioned here. we must always have information regarding the drying mechanics. So, that knowledge of heat and mass transfer method for fruit drying helps to identify best operating conditions and saves the most quantity of energy.

Food is the necessity for mankind as it provides energy, growth, and repair to the body. Fruit is an agricultural commodity and most of the agricultural commodities are seasonal. Fruits are present in bulk amount during their season, but during the offseason, this seasonal fruit is unavailable because it gets wasted due to improper storage techniques. About 40% of the fruits production in Pakistan was wasted due to improper handling and preservation techniques. Fruit production in Pakistan in 2016–17 is 5,685,000tons and 440,000tons were exported and 2,274,000tons get wasted. To make food secure one should reduce post–harvest losses. Fruits get wasted due to improper harvesting, transportation, processing, and preservation methods. Agricultural products are sometimes categorized on the basis of water contents present in them; perishable, semi–perishable and non–perishable products. For few days fruit can be save according to its shelf life (perish ability value), but after these days sensory parameters like taste, flavor, texture, color degrades and finally, fruit becomes unable to eat. In order to prolong its shelf life for months, dry it by proper means and in a hygienic environment.

Drying is a unit operation that is carried out to preserve fruit, instead of a unit process, which is a chemical process. Drying is the removal of moisture from fruit products up to a certain level and dehydration is the bone–dry condition of that product. Drying is a physical process performs to stabilize fruit as biological changes in fruit lead to deterioration. Cost of transportation decreases and handling becomes easy as its weight and volume reduces, consumption is followed with calculated rehydration.

Objectives of drying:

Drying slows down the microbial and enzymatic activity by lowering water activity. Apple has a water activity of 0.85–0.95 and drying reduces water activity to about 0.5.2 Fruits are dried due to many reasons; to consume seasonal fruits and to export these products in non–production areas of such fruits. Dried fruits enhance the taste of food products when used as food formulations in many food products such as ice creams, frozen desserts, sweets, bakery products, baby foods, jellies, crackers, horseradish, miscellaneous, and sauces etc.

Heat transfer:

Temperature difference is the driving force for heat transfer. So, heat transfer exchanges thermal energy from high concentration to low concentration between physical systems. There are three modes of heat transfer namely, conduction, convection, and radiation.

Specific heat:

Quantity of heat required to change a unit temperature of unit mass of product, without changing in its original state.

Thermal conductivity:

Quantity of heat is conducted through per unit thickness, per unit time of the product, if two materials having a unit temperature difference.

Thermal diffusivity:

Ratio of thermal conductivity to specific heat and density.

Mass transfer:

Mass transfer is the movement of chemical species from high concentration region to low concentration region and the presence of these two regions are necessary, but fluid flow moves from one location to another and occurs on a macroscopic level

Drying process:

Drying is a coupled heat and mass transfer mechanism. There are different types of drying units/machinery used in this modern era. Food Engineers are working very hard to develop more efficient methods for drying of perishable agricultural products that least alter its quality.

Fruit in its biological structure is variable and complex so every fruit needs a different model to dry it by retaining quality, which is challenging. So, modeling and simulation is a useful technique to deal with it. Mathematical model based on heat and mass transfer is used to study the behaviour of drying operation.

Fruits due to high water content and heat sensitive compounds in it are tough to dry, by maintaining quality. Understanding heat and mass transfer process and its parameters are mandatory for the drying processes, which minimally have an effect on the sensory and different quality parameters of edible fruit. Calculations for heat and mass transfer greatly help to optimize the efficiency of drying unit, drying rate and as well as reduces energy consumption, it additionally helps to identify the most appropriate operating conditions.

We at KERONE have a team of experts to help you with your need for Heat Transfer in various products range from our wide experience.