

IN ASSOCIATION WITH EMItech, ITALY

Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

Customer :	M/s Foodiverse, Cairo, Egypt
Process :	Batch Microwave+Convection Heat Treatment for Cooking and Drying of Rice

TEST REPORT No: 47/KRDC/LAB/17 Mum 25/04/2018

Date Sample reception	: 25/04/2018
ID	: 47/LAB/28

SAMPLE DESCRIPTION:

Sampling	: As Requested
Sample Condition	: Acceptable
Quantity	: 1 kg
Sampling date	: 26/04/2018
Product	: Sushi Rice
Requirement	: Final product must be cooked and dried upto 4-5% moisture content
Start Date test	: 26/04/2018
End Date test	: 26/04/2018

LABORATORY EXPERIMENTAL SET UP:

Format: F/R&D/01

Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

LAB BATCH MICROWAVE HEATING SYSTEM SPECIFICATIONS:

Microwave Power	2 kW(CW)	
Frequency	2450 MHz ± 50	
Convective Power	3.5 kW (air flow 350 l/min at 20°C)	
Microwave Exposure Zone (cavity)	1 cubic meter	
Mode Stirrer	One	
Thermal Monitoring System	Single Channel Fiber Optic: Range -40 to 250°C	
Exhaust Power	1HP	
Tray Size	450x950x50 mm	

ENVIRONMENT-LABORATORY AMBIENT CONDITIONS:

Temperature (degree C)	29.5°C (±5°C)
Humidity (%)	≤ 45% RH
Pressure (kN/m2 or kPa)	Not recorded

Note for recommendation: Environmental conditions have a direct impact on test results. Accuracy and consistency of test data are affected by the laboratory conditions

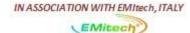
EQUIPMENTS USED:

Name of Equipment	Picture of Equipment	Specifications
Compact Thermal Imaging Camera		Model: FLIR E-30 Resolution: 160 x 120 IR Thermal sensitivity of 0.10°C

Format: F/R&D/01

IN ASSOCIATION WITH EMItech, ITALY

Tel- +91-25	1-2620542/13/44/45/46, Email-inf	
Moisture Analyzer		Make: Axis Balance Description: Moisture range: 1%(sample 0.02/0.05g), 0.1% (Sample 0.5/5g), 0.01%(Sample>5g)
Thermo Hygrometer		Model No: HTC-2 Temperature accuracy: ±°C (1.8°F) Temperature resolution: 0.1°C (0.2°F) Humidity range: 10%~99% RH Humidity accuracy: ±5% RH Humidity resolution: 1% RH
Vertical Autoclave		Working Size: 12"dia x 12"ht Rating: 3.0K.W. Pressure Range: upto 2 kg/cm ²


SAMPLE PREPARATION AND METHOD/PROCEDURE:

The experiment has been performed on sushi rice without adding any additive to speed up the drying rate. For this experimental run, after washing in tap water rice has been partly cooked by steam cooking in vertical autoclave. Then this partly cooked rice on a tray has placed in such a manner that it form uniform layer for air to circulate for achieving even drying characteristics and to achieve uniform microwave exposure within the product and then kept in batch microwave+convection heating system for treatment. The observations are made after every 10 minutes. Also, initial weight before drying, weight after washing, weight after steaming, final weight after drying, initial moisture content, moisture content after treatment, and moisture content after cooking test, i.e., rehydration has been taken.

ANALYTICAL RESULTS:

Setting Temperature: 70°C Microwave Power: 0.5 kW

Format: F/R&D/01

Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

Heater: 50°C

Speed: 50%

Initial Sample Weight: 200 grams

Initial Moisture Content: 10.7%

Weight after Washing: 231 grams

Moisture Content after Washing: 16.9%

Weight after Steaming: 246 grams

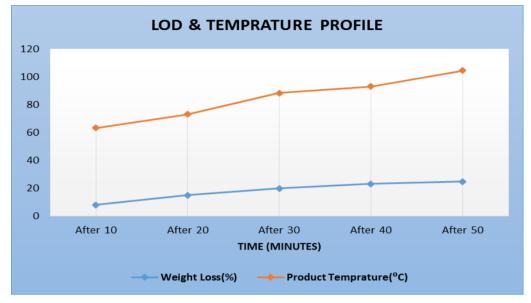
Moisture content after Steaming: 27%

Sr.	Time	Weight noted	Total weight	Temperature on	Remarks, if any
No.	(minutes)	(grams)	loss(grams)	sample(°C)	
1.	After 10	226	20	63.4	Drying rate started
2.	After 20	209	37	73.2	Drying phase continue
3.	After 30	197	49	88.5	Variant of Drying rate
4.	After 40	189	57	93.2	Variant of Drying rate
5.	After 50	185	61	104.6	Required Drying rate

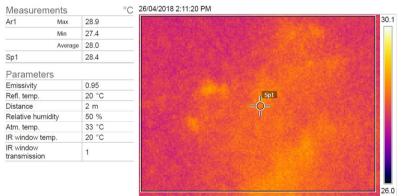
Sample weight after drying: 185grams Total weight loss on drying: 61 grams Final Moisture Content: 3.4%

MOISTURE ANALYSIS REPORTS:

Drying started	Drying started	Drying started	Drying started
Bate :26-04-2018 Tame :12:32:11 todel:A65200 terial number : 138	Bate 124-04-2018 Time :14:47:09 Model:465200 Sarial number : 138	Date 126-04-2018 Time i16:34:17 Model:A65200 Serial number : 138	Date :26-04-2016 Time :17:14:41 Model:465200 Serial number : 130
Brying parameters	Drying parameters	Drying parameters	Drying parameters
Product : Test	Product : Test	Product : Test	Product : Test
Drying temperature : 105.0 °C .	Drying temperature : 105.0 *C	Drying temperature : 105.0 °C	Drying temperature : 105.0 *C
Trying profile : standard tode : Short mode alculation : ((w0-m)/w0)41000 inished : 3 mamples	Drying profile : standard Mode : Short mode Calculation : ((mO-m)/wO)#100% Finished : 3 samples	Drying profile : standard Node : Short mode Calculation : ((w0-w)/w0)%100% Finished : 3 samples	Drying profile : standard Mode : Short mode Calculation : ([#0-s]/w0)#100 Finished : 3 samples
nitial weight : 3.038 g	Initial weight : 3.023 g	Initial weight : 3.041 9	Initial weight : 3.035 9
inal weight : 2.713 g	Final weight : 2.513 g	Final weight : 2.219 9	Final weight : 2.933 g
rying time : 00:21:20s mpling interval : 20 sec	Drying time : 00:19:20s Sampling interval : 20 sec	Drying time : 00:43:20s Sampling interval : 20 sec	Drying time : 00:08:00s Sampling interval : 20 met
isture : 10.7 I	Moisture : 16.9 %	Moisture : 27.0 %	Moisture : 3.4 I
re Initial	NOTE After washing	NOTE After Steaming	NOTE After MW) Kealmien
analysis performed by:	The analysis performed by:	The analysis performed by:	The analysis performed by:


Format: F/R&D/01

IN ASSOCIATION WITH EMItech, ITALY (EMitech)


Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

GRAPHICAL REPRESENTATION OF DRYING PARAMETERS:

THERMAL IMAGE BEFORE AND AFTER HEAT TREATMENT:

1. Before Heat Treatment

2. After Heat Treatment:

Measure	ments	-	26/04/2018 4:57:29 PM
Ar1	Max	120.4	
	Min	70.3	CARLES AND AND A CARLES AND A
	Average	95.3	and the second
Sp1		104.6	and the second
Paramet	ers		A STATE OF STATE
Emissivity		0.95	
Refl. temp.		20 °C	Sp1
Distance		2 m	-Ö-
Relative hu	midity	50 %	
Atm. temp.		33 °C	the second second and the second s
IR window t	temp.	20 °C	A state of the other state of the
IR window transmissio	n	1	
			A CAR DISA DI CARDON CARDON DE C

Format: F/R&D/01

Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

BEFORE AND AFTER PICTURES OF TREATED SPECIMEN SAMPLE

PICTURES OF GRAIN SIZE AFTER EVERY TREATMENT:

INITIAL

AFTER STEAMING

FINAL

COOKING TEST:

For cooking test, little amount of treated sample has been taken in a mug and then boiled water added to it and covered it for 2 minutes followed by stirring.

Format: F/R&D/01

IN ASSOCIATION WITH EMItech, ITALY

MEMBER OF A.M.P.E.R.E. (EUROPE) MEMBER OF AIMCAL (USA)

Kerone Research & Development Centre (KRDC), B/47, Addl. MIDC. Anand Nagar, Ambernath (East), Thane- 421 506, India Tel- +91-251-2620542/13/44/45/46, Email-info@kerone.com, www.kerone.com

MOISTURE GAINED AFTER COOKING TEST:

OBSERVATIONS:

The Drying behavior of steamed rice has been investigated under the microwave+convection irradiation mode dryer. The drying rate is found to be increasing with respect to increasing drying time. It has been found that the moisture content on the dry basis (%) decreases with respect to increase drying time. As per physical investigation, it has been observed that there is crunchiness in texture without burning and there is little colour change to yellowish.

KKomal

Miss Komal Bhoite Tested By

Format: F/R&D/01